

Terminology

Evapotranspiration Systems referred to as:

- Evapotranspiration Absorption Systems ETA Australia (unlined)
- Evapotranspiration Seepage Systems ETS New Zealand (unlined)
- · Or simply Evapotranspiration Systems ET, if lined

Centre for Environmental Training

Purpose ETA/S Systems designed to: • Maximise evapotranspiration • Reduce absorption (drainage) in unlined systems • Avoid absorption in lined systems • Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training

			-	,				
Month	Pan evapo- ration E	Evapotran -spiration ET ET=0.75E	Rainfall R	Retained rainfall R, R,=0.75R	LTAR per month	Disposal rate per month	Effluent applied per month	Size of area
	mm	mm	mm	mm	mm	mm	L	m²
Jan	207.7	155.8	109	81.75	0	74.01	27900	376.90
Feb	170.8	128.1	119	89.25	0	38.85	25200	648.65
Mar	151.9	113.9	122	91.50	0	22.43	27900	1244.15
Apr	114.0	85.5	105	78.75	0	6.75	27000	4000.00
May	77.5	58.1	105	78.75	0	-20.63	27900	-1352.73
Jun	75.0	56.3	121	90.75	0	-34.50	27000	-782.61
Jul	80.6	60.5	69	51.75	0	8.70	27900	3206.90
Aug	108.5	81.4	84	63.00	0	18.38	27900	1518.37
Sep	141.0	105.8	59	44.25	0	61.50	27000	439.02
Oct	167.4	125.6	82	61.50	0	64.05	27900	435.60
Nov	192.0	144.0	76	57.00	0	87.00	27000	310.34
Dec	232.5	174.4	80	60.00	0	114.38	27900	243.93

		pui	013	τοι	eat	ITTIU	ient	
Month	First trial area	Applica- tion rate (3)	Disposal rate per month (4)	(3) - (4)	Increase in depth of stored effluent	Depth of effluent for month (X - 1)	Increase in depth of effluent	Compu- ted depth oi effluent month (X)
	m'	mm	mm	mm	mm	mm	mm	mm
Dec	1000							
Jan		27.9	74.01	-46.11	-153.70	0 .	+ -153.70	= 0
Feb		25.2	38.85	-13.65	-45.50	0	+ -45.50	= 0
Mar	1	27.9	22.43	5.47	18.23	0	+ 18.23	= 18.2.3
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul	-	27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	1	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep		27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

• Calo eva thre	culat potra e be	e the anspi droo	e mir iratic m / 1	nimu on-at	m ar psorp	ea a otion on dv	nd d /see wellii	epth page	of a e are	in a foi	ra	
• BoN	/l rair	nfall	and	pan	evap	oorat	ion o	data				
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0
MEAN MONTHLY RAINFALL (mm)	93.3	99.6	92.1	70.3	58.8	56.4	35.9	45.8	40.2	64.1	76.1	71.7
							Cer	ntre for E	nvironme	ental Trai	ning	cet

Water Balance Exercise

 Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes)

Centre for Environmental Training

Water Balance Exercise

- Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following pages
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm)
- Conventional beds may have between 300 mm and 600 mm of aggregate, ETA/ETS beds 400 mm of aggregate and sand Centre for Environmental Training

(1) Month	(2) Pan evaporation E mm	(3) Evapo transpiration ET ET = 0.75E mm	(4) Rainfall R mm	(5) Retained rainfall R _r R _r = 0.75R mm	(6) DLR per month mm	(7) Disposal rate per month (3)-(5)+(6) mm	(8) Effluent applied per month L	(9) Size of area (8)/(7) m ²
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tria	al area = a	verage mont	hly area =	n

(1) Month	(2) First trial area m ²	(3) Application rate (8)/(2) mm	(4) Disposal rate per month (7) mm	(5) (3) - (4) mm	(6) Increase in depth of stored effluent (5)/n mm	Depth of effluent for month (X - 1) mm	(7) Increase in depth of effluent + (6) mm	Computed depth of effluent month (X) mm
Dec			-	-		0		
Jan								
Feb								
Mar						1		
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								

Can use water balances to size/check size of all land application areas Previous example of unlined bed Slight modification for lined bed or trench (LTAR/DLR = 0) Similar water balance used for sizing irrigation areas, but considers soil as an infinitely thin store (i.e. no soil storage) for conservative sizing

References

 Patterson RA, (2006). Evapotranspiration Bed Designs for Inland Areas. Septic Safe Technical Sheet Reference 05/15. NSW Department of Local Government, July 2006

Centre for Environmental Training

cet

Size of area	'n,	376.90	648.65	1244.15	4000.00	-1352.73	-782.61	3206.90	1518.37	439.02	435.60	310.34	243.93
Effluent applied per month	L	27900	25200	27900	27000	27900	27000	27900	27900	27000	27900	27000	27900
Disposal rate per month	шш	74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
LTAR per month	шш	0	0	0	0	0	0	0	0	0	0	0	0
Retained rainfall R, R,=0.75R	шш	81.75	89.25	91.50	78.75	78.75	90.75	51.75	63.00	44.25	61.50	57.00	60.00
Rainfall R	шш	109	119	122	105	105	121	69	84	59	82	76	80
Evapotran -spiration ET ET=0.75E	шш	155.8	128.1	113.9	85.5	58.1	56.3	60.5	81.4	105.8	125.6	144.0	174.4
Pan evapo- ration E	шш	207.7	170.8	151.9	114.0	77.5	75.0	80.6	108.5	141.0	167.4	192.0	232.5
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Month	First trial area	Applica- tion rate (3)	Disposal rate pcr month (4)	(3) - (4)	Increase in depth of stored effluent	Depth of effluent for month (X - 1)	Increase in depth of effluent	Compu- ted depth of effluent month
	m ¹	шш	mm	шш	шш	шш	шш	mm
Dec	1000							
Jan		27.9	74.01	46.11	-153.70	, 0	+ -153.70	= 0
Feb		25.2	38.85	-13.65	45.50	0	+ -45.50	= 0
Mar		27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul	Ŧ	27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	•	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep	2	27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Bureau of Meteorology rainfall and pan evaporation data for the nearest station is provided below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0
MEAN MONTHLY RAINFALL (mm)	93.3	99.6	92.1	70.3	58.8	56.4	35.9	45.8	40.2	64.1	76.1	71.7

Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 550 mm).

Calculation of evapotranspiration-absorption area size by water balance method

4th -4 C i J

(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
Month	Pan	Evapo	Rainfall	Retained	DLR	Disposal	Effluent	Size
	evaporation	transpiration		rainfall	per	rate	applied	of area
			R		month	per month	per	(8)/(2)
	ш	ET		Å,		(3)-(5)+(6)	month	
		ET = 0.75E	mm	$R_{r} = 0.75R$	mm			m ²
	mm	mm		mm		mm	_	
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
•				First tris	al area = a	verage mont	hly area =	m ²

		uted h of	ent (X)	(c.) .	c									2				
		Comp deptl	month		um													
	(7)	Increase in depth	ot effluent	+ (6)	mm													
		Depth of effluent	tor month (X - 1)		mm	0												
	(9)	Increase in depth	of stored effluent	(5)/n	mm	1												
	(2)	(3) - (4)	mm															
	(4)	Disposal rate	per month	(7)	шш	1												
uent (first trial)	(3)	Application rate	(8)/(2)	mm														
stored efflu	(2)	First trial	area	m²														
Depth of s	(1)	Month				Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3

		Total																			
		D																			
		Z																			
		0																	*		
		s																	•	 	
		A																	•	 	
		J																			
		ŗ																			
		M																			
		A																			
		Μ						T													
		F						T											 		
		ŗ						T													
		Units	days	mm/month	mm/month		 mm/month	mm/month	mm/month		mm/month	mm/month		mm/month		mm/month	 mm/month	mm	 'n	 mm	m
L/day	mm/wk	Formula	•			•	 ExC	(R/7) x D	(ET+B)		•	(ET + B) -P		H/12		(P + I)	(P+I) - (ET+B)	•	 365 x Q/H	 largest M	(V x L)/1000
0	ଞ	Symbol	ê	€	Ð	<u>ල</u>	 (ET)	e	,		6	6		e			 (S)	Q	Ð	 S	
Design Wastewater Flow	Design Percolation Rate	Parameter	Days in month	Precipitation	Evaporation	Crop factor	Evanotranspiration	Percolation	Outputs	Inputs	Precipitation	Possible Effluent	Irrigation	Actual Effluent	Production	Inputs	Storage	Cumulative storage	IrrigationArea	Storage	

Minimum Area Method Water Balance and Wet Weather Storage Calculations

.1.

Design Wastewater Flow	0	L/day														
Design Percolation Rate	8	mm/wk														
Land Area	(j	m²														
Parameter	Symbol	Formula	Units	ſ	F	Μ	¥	М	ſ	ſ	¥	s	•	N	0	Total
Days in month	ê		days													
Precipitation	Ð		mm/month													
Evaporation	▣		mm/month													
Crop factor	(C)															
Inputs																
Precipitation	Ð	•	mm/month						\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	┝	
Effluent Irrigation	6	(Q x D)/L	mm/month								\vdash	\vdash	\vdash		\vdash	
Inputs		(P+W)	mm/month													
Outputs																
Evapotranspiration	EI)	ExC	mm/month							\vdash	\vdash	\vdash	\vdash		\vdash	
Percolation	®	(R/7) x D	mm/month										\vdash			
Outputs		(ET+B)	mm/month													
Storage	(S)	(P+W) - (ET+B)	mm/month						\vdash		\vdash	\vdash	\vdash	\vdash	┝	
Cumulative storage	(M)	•	mm													
Storage	S)	largest M	mm													
		(V x L)/1000	m ³													

Monthly Water Balance used to Determine Wet Weather Storage for a Medium Rainfall Region with a Nominated Irrigation Area

.t.