On-site Wastewater Management Training Course

Secondary Treatment

Sand Filters, Media Filters and Mound Systems

Centre for Environmental Training

Operation and Installation

- Aerobic treatment provided by trickling primary treated effluent though 600mm - 900mm sand bed (packed bed)
- · Biofilm develops on media surface
- · In contact with air in pore spaces in media
- · Media contained within an impermeable liner
- · May be above, partially above, or below ground
- · Filter surface may be open or covered

Centre for Environmental Training

Treatment and Sizing

- · Acquired in a single pass through media
- Effectiveness dependent on hydraulic and organic load
- Hydraulic conductivity determined by media characteristics (particle size distribution)
- Hydraulic load 50L/m²/d
- BOD₅ load 25g/m²/d

Source: NSEC

 Typically achieves BOD₅/TSS: 20/30mg/L or better

Centre for Environmental Training

Centre for Environmental Training

Improving Performance Pressure-distribution and timed dosing Recirculation (multiple-pass) Drilled Distribution Laterals Filter Sand Sandy Loam Pine Bark Plantings Pine Aggregate Smm - 10mm Specification Underdrain Centre for Environmental Training

Filter Sand Considerations

- Sand sieved for particle size analysis (PSA)
- Plot histogram and cumulative frequency curve
- Filter sand <3% clay and fine silt (<0.006mm)
- Effective size (ES) (d₁₀ smallest 10% diameter) between 0.25mm and 1.00mm
- Uniformity coefficient (UC) $(d_{60}/d_{10}) < 4$

Centre for Environmental Training

Bottomless Sand Filter Treatment and land application in single footprint Single-pass with soil absorption Source: W Cromer Centre for Environmental Training

Wisconsin Mound Systems

Design considerations:

- · Aligned on contour
- Ground suitably prepared
- Appropriate materials and construction
- Sand loading rate at distribution manifold
- Linear loading rate across slope
- Basal loading rate on soil at base of mound

Centre for Environmental Training

Treatment Performance of Sand Filters and Mound Systems

	BOD ₅ (% removal)	TSS (% removal)	TN (% removal)	FC (% removal)
Intermittent sand filter / Mound	90-98	90-95	14-50	97-99
Recirculating sand filter	95-99	81-95	45-82	97-99

Centre for Environmental Training

Amended Soil Systems

Use soil or alternative media for nutrient reduction

- P-sorption
 - Gypsum amended red mud (by-product of bauxite refining for aluminium)
 - Air-dried Blast Furnace Slag
- N reduction
 - Zeolite

Centre for Environmental Training

Ecomax System, WA

Centre for Environmental Training

Ecomax System, WA

Centre for Environmental Training

Ecomax System, NSW

Centre for Environmental Training

Ecomax System, NSW

Centre for Environmental Training

Ecomax Mound at School, NSW

Centre for Environmental Training

Flat bed limits rainfall runoff and evapotranspiration Centre for Environmental Training

References

 Converse, JC & Tyler EJ (2000). Wisconsin Mound Soil Absorption System: Siting, Design and Construction Manual, #15.24, University of Wisconsin-Madison, Small Scale Waste Management Project.

Centre for Environmental Training

References

- Cromer, WC (2013). Bottomless sand filters: Notes for designers, installers and regulators July 2013. Land application systems for domestic wastewater management. Unpublished report by William C Cromer Pty Ltd, 1 December 2013.
- Whitehead, J & Geary P (2009). Sand Mounds for Effective Domestic Effluent Management, Water 36, 1 (pp 27-32).

Centre for Environmental Training

References

 A guide to installing a sand mound to manage onsite wastewater, WaterNSW, https://vimeo.com/72859822

Centre for Environmental Training

cet