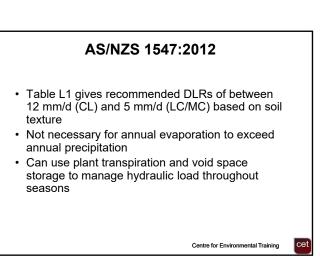
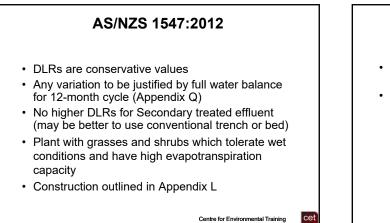
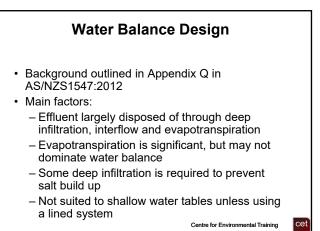


Terminology


Evapotranspiration Systems referred to as:


- Evapotranspiration Seepage Systems ETS New Zealand (unlined)
- Evapotranspiration Absorption Systems ETA Australia (unlined)
- · Or simply Evapotranspiration Systems ET, if lined

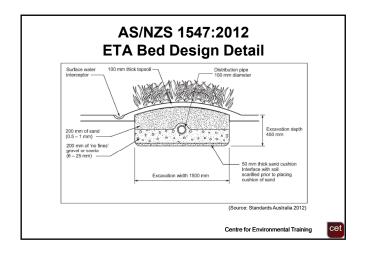

Centre for Environmental Training

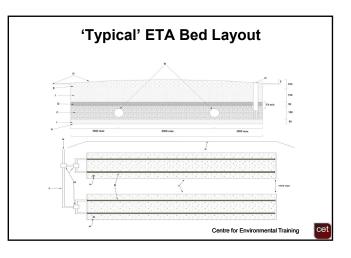
Purpose ETA/S Systems designed to: • Maximise evapotranspiration • Reduce absorption (drainage) in unlined systems • Avoid absorption in lined systems • Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training

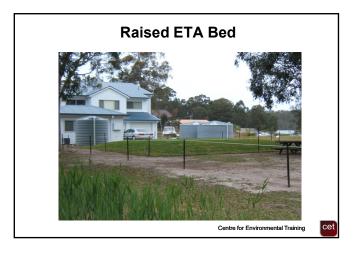
Important Components of ET Bed Design

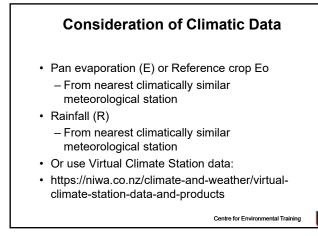
- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Long term average Eo (reference crop evapotranspiration) values are accurate enough for water balance calculations
- Reference crop Eo values represent evapotranspiration from a well grassed paddock i.e. similar to grass on an evapotranspiration bed
- Average monthly Eo values available for a range of New Zealand Sites (i.e. Eo = ET)


Centre for Environmental Training

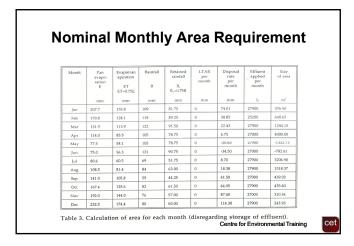

Important Components of ET Bed Design

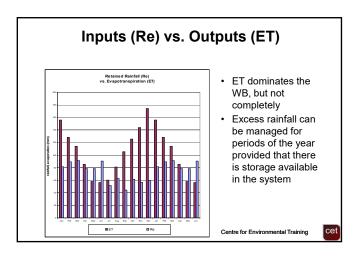
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium


Centre for Environmental Training


• Void Ratio (*n*) – proportion of bed available for water/air storage

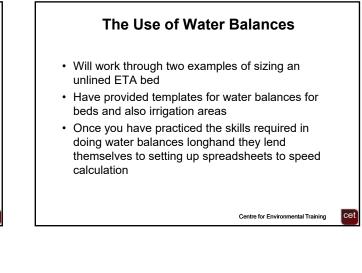
'Class A' Evaporation Pan

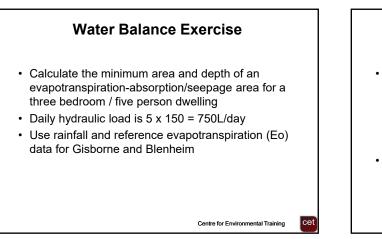


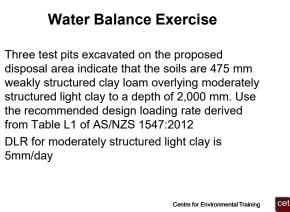

- Alternatively determine evapotranspiration data by use of Class A pan evaporation data and a Crop Factor which varies by crop and season
- Limited class A pan evaporation data available

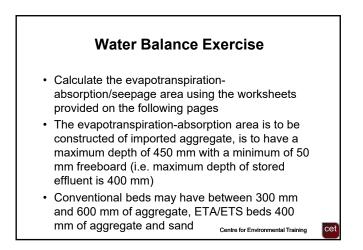
E: BoM) Centre for Environmental Training

Monthly Average Reference Crop (Eo) values for NZ Sites Table 1 – Average monthly FAO-56 evaporation for a range of New Zealand sites. The symbol * indicates solar radiation data were available. Sunshine hour data were used to estimate solar radiation at the other sites. X* stands for Airport. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Site Kaitaia A * Kaitaia A * Whenuapai A* Hamilton (Rukuhia) * Tauranga A Rotorua A * Gisborne A * New Plymouth A Napier Masterton (Waingawa) Palmerston North Blenheim Hokirika A * Lincoln Alexandra * Dunedin A * Invercargill A * 97 92 92 101 93 93 89 96 86 86 86 108 70 85 81 78 69 86 101 82 100 81 102 92 113 87 107 93 120 78 93 97 119 83 103 77 97 103 125 67 86 90 109 84 110 85 101 75 90 125 951 119 884 120 893 132 999 125 918 136 987 136 987 136 987 136 987 114 884 136 987 116 831 146 108 101 727 128 881 129 795 116 832 107 741 109 105 108 116 109 111 103 112 107 103 130 84 107 104 93 85 67 59 61 69 62 64 63 53 55 73 45 53 43 53 45 49 40 40 46 41 46 43 32 35 47 32 34 21 39 33 36 30 35 29 36 36 31 24 24 24 35 27 25 11 26 22 39 33 32 40 32 37 38 32 24 25 36 28 25 10 27 23 47 41 43 47 41 46 45 43 35 37 48 38 36 23 40 35 63 57 58 66 60 66 57 66 55 53 73 48 57 50 59 52 133 126 127 141 133 141 121 142 133 123 158 101 133 131 117 104

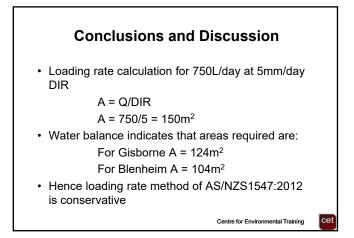

		N	lea	n N	lon	thly	/ R	ain	fall				
Mean monthly rainfall (nm)												
Data are mean monthly	values for	the 1991-2	020 period	for location	ons having	at least 5 o	omplete ye	ears of data	1				
Station details are availa	ble in sepa	rate table											
LOCATION	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Kaitaia	75.0	86.0	84.7	98.8	130.5	149.9	168.1	137.0	121.7	90.4	76.3	101.6	1320.0
Whangarei	78.0	83.2	119.2	94.1	112.9	142.2	173.5	130.0	112.3	76.8	75.9	90.9	1289.0
Auckland	58.1	63.1	75.0	87.1	119.8	119.4	136.9	117.2	100.1	91.6	68.9	81.7	1118.9
lauranga	76.2	83.2	94.9	132.1	116.2	120.6	133.4	111.6	86.5	80.4	63.4	103.0	1201.
lamilton	75.4	65.0	75.4	92.3	103.3	117.8	124.2	106.5	100.1	86.0	79.0	99.2	1124.
Rotorua	93.8	100.4	100.3	133.0	130.2	131.9	137.4	125.2	106.6	92.9	86.8	117.1	1355.
Sisborne	71.4	65.9	94.0	107.1	84.0	107.4	118.7	78.1	73.1	76.1	65.2	59.9	1000.9
laupo	73.4	64.8	65.9	77.3	79.4	93.0	99.8	88.6	79.0	74.2	64.7	88.0	948.
New Plymouth	76.3	89.8	91.1	117.1	149.4	143.6	141.3	128.8	122.9	127.0	103.7	119.3	1410.
Napier	63.8	54.1	61.8	81.2	62.2	78.5	97.0	57.0	58.1	60.9	57.3	57.8	789.
Whanganui	58.1	69.6	60.5	84.5	80.8	90.3	87.0	83.5	75.9	89.1	75.3	89.5	944.
almerston North	58.7	68.6	57.4	83.6	87.2	95.5	87.5	83.5	89.0	96.3	86.3	89.9	983.
Masterton	52.4	48.5	69.9	71.5	72.9	91.0	113.6	81.7	73.2	82.0	71.9	60.6	889.
Wellington	79.2	55.5	99.6	126.7	144.9	123.8	147.1	139.1	108.0	118.7	85.4	91.1	1319.
Velson	73.2	62.8	71.1	84.9	87.7	99.5	78.6	83.8	84.6	89.0	67.9	93.0	976.
Blenheim	43.0	44.6	39.4	53.8	56.9	68.6	64.2	57.9	54.4	57.2	49.1	49.7	638.
Vestport	163.4	121.4	143.1	163.8	186.5	199.5	170.1	187.0	182.6	202.2	157.3	196.9	2073.
Caikoura	47.4	39.3	66.1	66.6	51.0	73.0	86.5	59.1	53.6	64.4	58.8	49.3	715.
lokitika	257.4	191.7	213.4	244.9	252.8	261.2	228.0	246.9	244.7	284.8	222.9	272.1	2920.
hristchurch	42.4	39.8	45.1	57.5	58.1	68.3	64.2	58.1	42.2	49.1	45.1	47.8	617.






ce

	Del	pui			ed E		10111	•
Month	First trial area m ¹	Applica- tion rate (3)	Disposal rate per month (4) mm	(3) - (4) mm	Increase in depth of stored effluent mm	Depth of effluent for month (X - 1) mm	Increase in depth of effluent mm	Comp ted depth efflues month (X) mm
Dec	1000							
Jan		27.9	74.01	-46.11	-153.70	0 .	+ -153.70	- 0
Feb		25.2	38.85	-13.65	-45.50	0	+ -45.50	= 0
Mar	1	27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul		27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug		27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep		27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0



(1) Month	(2) Pan evaporation E mm	(3) Evapo transpiration ET ET = 0.75E mm	(4) Rainfall R mm	(5) Retained rainfall R _r R _r = 0.75R mm	(6) DLR per month mm	(7) Disposal rate per month (3)-(5)+(6) mm	(8) Effluent applied per month L	(9) Size of are (8)/(7 m ²
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tria	al area = a	verage mon	thly area =	

(1) Month	(2) First trial area m ²	(3) Application rate (8)/(2) mm	(4) Disposal rate per month (7)	(5) (3) - (4) mm	(6) Increase in depth of stored effluent (5)/n	Depth of effluent for month (X - 1)	(7) Increase in depth of effluent + (6)	Computed depth of effluent month (X)
			mm		mm	mm	mm	mm
Dec		-		-		0		
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
= effectiv	ve void sp	bace factor. For	r imported d	urable aggi	regate, n = 0.		Environmental T	raining Ce

Conclusions and Discussion

- Can use water balances to size/check size of all land application areas
- Previous example of unlined bed
- Slight modification for lined bed or trench (LTAR/DLR = 0)
- Similar water balance used for sizing irrigation areas, but considers soil as an infinitely thin store (i.e. no soil storage) for conservative sizing

Centre for Environmental Training

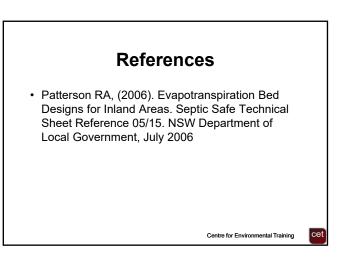


Table 1 – Average monthly FAO-56 evaporation for a range of New Zealand sites. The symbol * indicates solar radiation data were available. Sunshine hour data were used to estimate solar radiation at the other sites. 'A' stands for Airport.

Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Kaitaia A *	133	109	97	67	49	36	39	47	63	86	101	125	951
Whenuapai A*	126	105	92	59	40	30	33	41	57	82	100	119	884
Hamilton (Rukuhia) *	127	108	92	61	40	30	32	43	58	81	102	120	893
Tauranga A	141	116	101	69	46	35	40	47	66	92	113	132	999
Rotorua A *	133	109	93	62	41	29	32	41	60	87	107	125	918
Gisborne A *	141	111	93	62	46	36	37	46	66	93	120	136	987
New Plymouth A	121	103	89	64	46	36	38	45	57	78	93	114	884
Napier	142	112	96	63	43	31	32	43	66	97	119	136	978
Masterton (Waingawa)	133	107	86	53	32	24	24	35	55	83	103	123	857
Palmerston North	123	103	86	55	35	24	25	37	53	77	97	116	831
Blenheim	158	130	108	73	47	35	36	48	73	103	125	146	1080
Hokitika A *	101	84	70	45	32	27	28	38	48	67	86	101	727
Lincoln	133	107	85	53	34	25	25	36	57	90	109	128	881
Alexandra *	131	104	81	43	21	11	10	23	50	84	110	129	795
Dunedin A *	117	93	78	53	39	26	27	40	59	85	101	116	832
Invercargill A *	104	85	69	45	33	22	23	35	52	75	90	107	741

Mean monthly rainfall (mm)	(mm)												
Data are mean monthly values for the 1991-2020 period for locations having at least 5 complete years of data	y values for t	the 1991-2	020 period	for locatic	ins having	at least 5 co	omplete ye	ars of data	_				
Station details are available in separate table	lable in sepa	rate table											
LOCATION	JAN	FEB	MAR	APR	МАҮ	NUL	JUL	AUG	SEP	ост	NON	DEC	YEAR
		1		1		1		8				1	
Kaitaia	75.0	86.0	84.7	98.8	130.5	149.9	168.1	137.0	121.7	90.4	76.3	101.6	1320.0
Whangarei	78.0	83.2	119.2	94.1	112.9	142.2	173.5	130.0	112.3	76.8	75.9	90.9	1289.0
Auckland	58.1	63.1	75.0	87.1	119.8	119.4	136.9	117.2	100.1	91.6	68.9	81.7	1118.9
Tauranga	76.2	83.2	94.9	132.1	116.2	120.6	133.4	111.6	86.5	80.4	63.4	103.0	1201.5
Hamilton	75.4	65.0	75.4	92.3	103.3	117.8	124.2	106.5	100.1	86.0	79.0	99.2	1124.2
Rotorua	93.8	100.4	100.3	133.0	130.2	131.9	137.4	125.2	106.6	92.9	86.8	117.1	1355.6
Gisborne	71.4	65.9	94.0	107.1	84.0	107.4	118.7	78.1	73.1	76.1	65.2	59.9	1000.9
Taupo	73.4	64.8	62.9	77.3	79.4	93.0	99.8	88.6	79.0	74.2	64.7	88.0	948.1
New Plymouth	76.3	89.8	91.1	117.1	149.4	143.6	141.3	128.8	122.9	127.0	103.7	119.3	1410.3
Napier	63.8	54.1	61.8	81.2	62.2	78.5	97.0	57.0	58.1	60.9	57.3	57.8	789.7
Whanganui	58.1	69.6	60.5	84.5	80.8	90.3	87.0	83.5	75.9	89.1	75.3	89.5	944.1
Palmerston North	58.7	68.6	57.4	83.6	87.2	95.5	87.5	83.5	89.0	96.3	86.3	89.9	983.5
Masterton	52.4	48.5	69.9	71.5	72.9	91.0	113.6	81.7	73.2	82.0	71.9	60.6	889.2
Wellington	79.2	55.5	9.66	126.7	144.9	123.8	147.1	139.1	108.0	118.7	85.4	91.1	1319.1
Nelson	73.2	62.8	71.1	84.9	87.7	99.5	78.6	83.8	84.6	89.0	67.9	93.0	976.1
Blenheim	43.0	44.6	39.4	53.8	56.9	68.6	64.2	57.9	54.4	57.2	49.1	49.7	638.8
Westport	163.4	121.4	143.1	163.8	186.5	199.5	170.1	187.0	182.6	202.2	157.3	196.9	2073.8
Kaikoura	47.4	39.3	66.1	66.6	51.0	73.0	86.5	59.1	53.6	64.4	58.8	49.3	715.1
Hokitika	257.4	191.7	213.4	244.9	252.8	261.2	228.0	246.9	244.7	284.8	222.9	272.1	2920.8
Christchurch	42.4	39.8	45.1	57.5	58.1	68.3	64.2	58.1	42.2	49.1	45.1	47.8	617.7
Mt Cook	418.7	272.0	315.0	336.5	377.8	291.0	288.6	283.8	361.0	394.4	367.6	425.9	4132.3
Lake Tekapo	38.1	42.2	29.2	51.0	71.6	52.1	50.3	38.2	33.8	44.9	42.3	41.1	534.8
Timaru	50.3	52.3	38.6	49.3	39.7	39.4	42.0	44.6	33.5	47.8	51.5	54.0	543.0
Milford Sound	667.2	466.6	571.3	528.2	645.1	440.4	468.0	457.0	541.3	617.2	557.7	585.1	6545.1
Queenstown	71.6	51.0	49.3	57.5	75.1	62.2	55.8	52.8	62.3	62.4	60.7	60.3	721.0
Alexandra	46.9	41.1	31.2	22.0	34.3	30.9	25.2	15.4	21.3	29.6	32.7	34.5	365.1
Manapouri	88.6	85.3	82.7	85.0	104.4	91.4	94.2	82.0	106.2	113.0	95.7	97.4	1125.9
Dunedin	70.5	6.69	53.9	60.8	63.6	58.5	51.7	54.7	47.1	60.1	62.5	70.8	724.1
Invercargill	88.7	74.2	91.8	89.5	108.4	95.1	88.0	70.4	90.4	106.2	101.7	92.9	1097.3
Chatham Islands	49.2	64.0	75.7	79.0	88.3	93.7	72.3	71.0	71.3	56.2	53.5	62.9	837.1

Month	Pan evapo-	Evapotran -spiration	Rainfall	Retained rainfall	LTAR	Disposal rate	Effluent . applied	Size of area
	ration E	ET ET=0.75E	R	R, R,=0.75R	ntnom	per month	per month	
	шш	mm	unm	шш	шш	шш	L	č
Jan	207.7	155.8	109	81.75	0	74.01	27900	376.90
Feb	170.8	128.1	119	89.25	0	38.85	25200	648.65
Mar	151.9	113.9	122	91.50	0	22.43	27900	1244.15
Apr	114.0	85.5	105	78.75	0	6.75	27000	4000.00
May	77.5	58.1	105	78.75	0	-20.63	27900	-1352.73
Jun	75.0	56.3	121	90.75	0	-34.50	27000	-782.61
Jul	80.6	60.5	69	51.75	0	8.70	27900	3206.90
Aug	108.5	81.4	84	63.00	0	18.38	27900	1518.37
Sep	141.0	105.8	59	44.25	0	61.50	27000	439.02
Oct	167.4	125.6	82	61.50	0	64.05	27900	435.60
Nov	192.0	144.0	76	57.00	0	87.00	27000	310.34
Dec	232.5	174.4	80	60.00	0	114.38	27900	243.93

Table 3. Calculation of area for each month (disregarding storage of effluent).

							-	
Month	First Unal arca	Applica-	Uisposal rate	(4) - (5)	in depth	effluent	in depth	Lompu-
		rate (3)	per		of stored	for	of	depth of
			month (4)		effluent	month (X - 1)	effluent	effluent month
								(X)
	ѓЕ	шш	шш	шш	шш	шш	шш	шш
Dec	1000							
Jan		27.9	74.01	46.11	-153.70	, 0	+ -153.70	= 0
Feb		25.2	38.85	-13.65	45.50	0	+ -45.50	= 0
Mar		27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul		27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	•	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep		27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Use rainfall and Reference Crop evaporation (Eo) data from the previous two pages for both Gisborne and Blenheim.

Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see following page).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 450 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 400 mm).

TABLE L1 RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Desi	ign loading ra	te (DLR) (mm/	d)
Soil	Soil		Indicative	Trei	nches and be	ds	
category	texture	Structure	permeability (K _{sat})(m/d)	Primary treat	ted effluent	Secondary	ETA/ETS beds and
			(Salite Sa	Conservative rate	Maximum rate	treated effluent	trenches
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)	
2	Sandy Ioams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)	
		Massive	1.4 - 3.0	15	25	50	(see
3	Loams	High/ moderate structured	1.5 - 3.0	15	25	50	Note 4)
	Luains	Weakly structured or massive	0.5 - 1.5	10	15	30	
		High/ moderate structured	0.5 - 1.5	10	15	30	12
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8
	5 Light clays Weakt structu Weakt		0.06 - 0.12	4	5	10	5
			0.12 – 0.5	5	8	12	8
5			0.06 - 0.12		5	10	
			< 0.06		8	F	
		Strongly structured	0.06 - 0.5				5 (see Notes 2, 3, & 5)
6	Medium to heavy clays	Moderately structured	< 0.06	(s	ee Notes 2 & 3)	2, 9, α 9
		Weakly structured or massive	< 0.06				

NOTES:

- 1 The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- 2 To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).

4 ETA/ETS systems are not normally used on soil Categories 1 to 3.

5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

(Standards Australia/Standards New Zealand 2012)

Calculation of evapotranspiration-absorption area size by water balance method

0.0								
(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)
Month	Pan	Evapo	Rainfall	Retained	DLR	Disposal	Effluent	Size
	evaporation	transpiration		rainfall	per	rate	applied	of area
			ĸ		month	per month	per	(8)/(7)
	ш	ET		ሏ		(3)-(5)+(6)	month	ç
		ET = 0.75E	mm	$R_{r} = 0.75R$	mm			m²
	mm	mm		mm		mm	_	
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tris	al area = a	First trial area = average monthly area =	thly area =	m ²

(7) Increase Computed in depth of of effluent effluent + (6) mm									7				
Depth of effluent for month (X - 1) mm	0												
(6) Increase in depth of stored effluent (5)/n mm													
(5) (3) - (4) mm													
(4) Disposal rate per month (7) mm	ı												
(1) (2) (3) Month First Application trial rate area (8)/(2) m ² mm													
(2) First trial area m²													
(1) Month	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3

ons
18
3
- <u>3</u>
Ű
g,
8
5
ΰ'n
22
-8
8
ĕ
ti
2
ğ
ğ
H
щ.
ě.
đ
Ř
7
- <u>E</u> -
<u>e</u>
2
8
7
d
B
1
4
_

Design Wastewater Flow	0	L/day														
Design Percolation Rate	B	mm/wk														
Parameter	Symbol	Formula	Units	5	H	W	¥	M	5	5	¥	s	•	N	٩	Total
Days in month	e	•	days													
Precipitation	6	•	mm/month													
Evaporation	E	•	mm/month													
Crop factor	<u>ල</u>			Π												
Outputs																
Evapotranspiration	(ET)	ExC	mm/month													
Percolation	e	(R/7) x D	mm/month													
Outputs		(ET+B)	mm/month													
upurs .																
Precipitation	(H)	•	mm/month													
Possible Effluent Irrigation	Ś	(ET + B) -P	mm/momh													
Actual Effluent Production	Œ	H/12	mm/month													
Inputs		(I + J)	mm/month													
Storage	(S)	(P+I) - (ET+B)	mm/month													
Cumulative storage	(W)	,	шш													
IrrigationArea	(T)	365 x Q/H	E.													
Storage	S	largest M	mm													
		AT 11000	,	ſ												

Area
I Irrigation
Nominated
with a
Region
um Rainfall
Medium
e for a
Storag
Weather
Wet W
Determine
sed to
Balance u
Water
Monthly

Design Wastewater Flow	(0)	L/day														
Design Percolation Rate	ଞ	mm/wk														
Land Area	(T)	m^2														
Parameter	Symbol	Formula	Units	5	E.	M	V	M		ſ	V	s	•	z	6	Total
Days in month	e		days	,						,						
Precipitation	Ð	•	mm/month	\vdash	\vdash		\vdash	\vdash	$\left \right $	\vdash		$\left \right $	$\left \right $		$\left \right $	
Evaporation	E	•	mm/month	$\left \right $	\square	$\left \right $		$\left \right $	\vdash	\vdash		\vdash	\vdash		\vdash	
Crop factor	<u>(</u>)	•	,						\square			\square	\square	\square		
Inputs																
Precipitation	(J		mm/month													
Effluent Irrigation	6	(Q x D)/L	mm/month			\vdash		\vdash	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	
Inputs		(P+W)	mm/month				$\left \right $			$\left \right $						
Jutputs																
Evapotranspiration	EI)	ExC	mm/month			\vdash		\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	\vdash	
Percolation	(B)	(R/7) x D	mm/month													
Outputs		(ET+B)	mm/month													
Storage	(S)	(P+W) - (ET+B)	mm/month													
Cumulative storage	(W)	•	mm													
Storage	S	largest M	mm													
0	,	(V x L)/1000	m	İ				+		+	+	+		+		