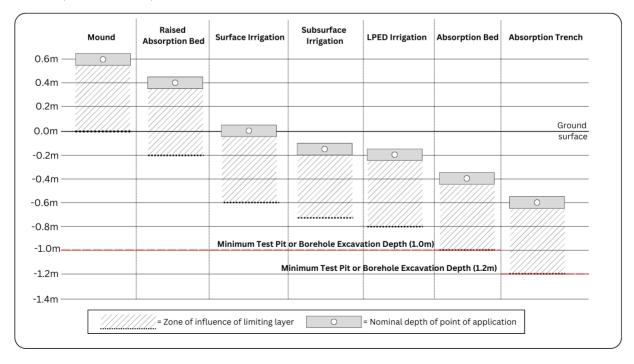

SITE ASSESSMENT AND DESIGN EXERCISE

Prior to commencing, it is important that we understand the relevance of the soil information gathered in the field, and how to interpret that information and successfully apply the methodology outlined in GOWM and EDRS (EPA VIC 2024) and VLCAF (MAV 2014) to determine:


- 1. The most-limiting horizon (or constraint) within the 'zone of influence' for the chosen effluent application system, and
- 2. The appropriate soil loading rate (SLR) for the observed characteristics of the limiting horizon.

To achieve this, we must understand two (2) important concepts.

Point of Application (POA) – The point at which treated effluent is applied to the soil. This is the level of the emitters in an irrigation system or the base of a bed or trench system.

Separation distance – The 'vertical' separation between the point of application and a limiting horizon. The separation distance between the point of application and the limiting horizon (or constraint) should be a minimum of 0.6 metre.

For this exercise we will work in small groups to complete a site assessment and design exercise for an on-site wastewater system.

Step One - Interpreting the Soil Log

(i) A 'typical' soil borehole log is provided below, along with a photograph of the excavated core. As seen, the core has been drilled to a depth of 1.2m and three (3) soil 'horizons' are identified.

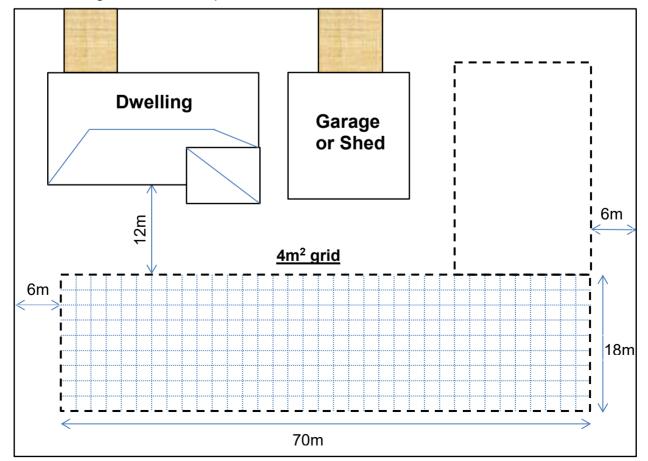
On the log, draw the <u>point of application</u> and show the minimum <u>separation distance</u> for the following effluent application systems: (a) absorption trench; (b) ETA bed; (c) Wisconsin sand mound and (d) irrigation system.

Note how different application systems intercept with the observed soil horizons and how selection of an appropriate 'limiting constraint' is guided by the POA.

Sc	ΣII	_ F	301	RE L	_OG										
Client:		Mr 8	k Mrs Dir	t		Test Pit No:		BH2							
Site:				up the bac	k		logged by:								
Date:		Yest	terday			Excavation	type:	Shovel, auger & crowbar							
Notes:		- ref	fer to site	e plan for p	osition of t	est pit									
						PR	OFILE D	ESCRIP	TION						
Depth (m)	Graphic Log	Horizon	Texture	Structure	Colour	Mottles	Coarse Fragment s	Moisture Condition	Photo Log		tify the PC tion distan following I	ce for ead	h of the	Depth (m)	
										Trench	ETA/Bed	Sand Mound	Irrigation		
												IVIOUITU		0.6	
														0.5	
														0.4	
														0.3	
														0.2	
														0.1	
		A1	SL	Moderate		No	2 - 10%	SM							
0.1		, · · ·			Dark brown				No. : 1 Ma					-0.1	
0.2							2-6mm							-0.2	
0.3		A2	SCL	Moderate	Dark greyish	No	2 - 10%	SM						-0.3	
		7.2	002	ouorato	brown				B.						
0.4							2-6mm							-0.4	
0.5														-0.5	
0.6							2 - 10%	D						-0.6	
0.7														-0.7	
		В	LC	Strong	Strong brown	Red and	6-20mm	D	84						
0.8						Orange (moderate)								-0.8	
0.9									187786					-0.9	
1.0									101401					-1.0	
1.1									700					-1.1	
1.2						Minor gley			A STATE OF THE STA					-1.2	
1.3]			<u> </u>	-1.3	

Step Two - Preliminary LAA Sizing

AS/NZS 1547:2012 supports a simple sizing methodology for effluent land application systems based on an 'areal loading' rate calculation.


$$A (m^2) = Q (L) / soil loading rate (DLR, DIR, BLR) (mm/day)$$

Assume that you are designing an OWM system for a new dwelling to be constructed on the Site, with reticulated water supply, and a design hydraulic load of **600L/day**.

(ii) To examine the relative land area requirements for a range of LAA systems, use Tables 4.8 and 4.9 from GOWM (EPA 2014) (see following pages) to determine the applicable (soil) loading rate and minimum system area required for each of the following LAA types, based on the 'limiting' soil condition from the soil log provided in Step 1.

LAA System Type	Loading Rate (mm/day)	Minimum Size (m²)
Absorption Trench/bed		
ETA bed		
Mound		
Irrigation area		

(iii) On the example Site Plan (below), sketch out how each LAA configuration might be arranged for this example Site.

Step Three - Fieldwork

Use the **Soil Survey Sheet** and **Appendix 2** (following pages) to record details of **your** site and soil assessment.

Auger a hole and lay the soil out carefully to represent the observed soil profile. Excavate a soil pit adjacent to the auger hole and note how much additional detail in the soil profile can be obtained by digging a soil pit.

Use the skills you have learned earlier to assess the soil texture by hand and feel for each horizon (layer) you can distinguish in the soil profile. Compile this information and the results of the other soils investigations listed on the table (Soil Survey Sheet).

(iv) What is the 'texture and structure' of the most-limiting soil horizon or constraint in the identified effluent land application area (LAA)?

Remember: Minimum vertical separation to limiting condition is 0.5m (AS/NZS 1547:2012)

(v) Would it be possible to mitigate the limiting condition identified? If so, how might you do that?

Step Four - Design Conditions

Assume that you are designing an OWM system for a **three-bedroom** dwelling with detached **one-bedroom** studio on the Site you have just investigated. Reticulated (town) water supply and standard water fixtures will be provided.

- (vi) What is the 'design occupancy' for the buildings and on what basis have you made this determination?
- (vii) If the dwelling is to be <u>occupied by **four** people</u>, and the studio can potentially be occupied by **two** people, what is the **'design hydraulic load'?**

TABLE H1
TYPICAL DOMESTIC WASTEWATER DESIGN FLOW ALLOWANCES – AUSTRALIA

Source	Typical wastewater design flows (L/person/day) On-site roof water tank supply Reticulated water supply				
Decidential promises	On-site roof water tank supply	Reticulated water supply			
Residential premises	120	150			

Source: Australian Bureau of Statistics. Water Account 2004/2005. Chapter 7 Figure 7.3

Table 4-3: Example calculations for household wastewater generation

Water supply	Household fixtures	Number of bedrooms	Number of people ⁸	Design flow rate (L/person/day)	Daily wastewater volume (L/day) ⁹
Reticulated	Standard water fixtures	4	5	180	900
Reticulated	Standard water fixtures	2	3	180	540
Reticulated	Water- reduction fixtures	4	5	150	750
Reticulated	Water- reduction fixtures	2	3	150	450
Onsite roof water tank	Standard water fixtures	4	5	150	750

Table 4-4: Minimum daily wastewater flow rates and organic loading rates – community/commercial premises¹⁰

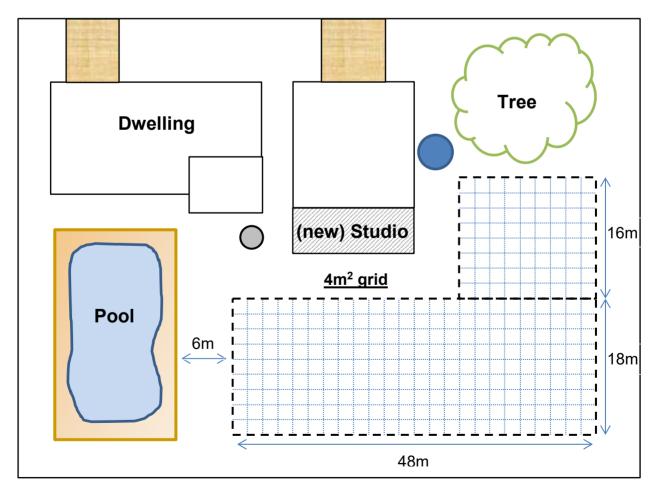
	Design hydraulic flow rates for all water supplies	Organic material loading design rates
Source	(L/person/day)	(g BOD/person/day)
Motels/hotels/guesthouse		
Bar trade per customer	7	8
Bar meals per diner	10	10
Per resident guest and staff with in-house laundry	150	80
Per resident guest and staff with outsourced laundry	100	80
Restaurants (per potential diner) ¹¹		
Premises <50 seats	40	50
Premises >50 seats	30	40
Tearooms, cafés (light refreshments and prepared food (e.g. cakes, etc.) per seat	10	10
Conference facilities per seat	25	30
Function centre per seat	30	35
Take-away food shop per customer	10	40
Public areas (with toilet, but no showers and no café) ¹²		
Public toilets	6	3
Theatres, art galleries, museums	3	2
Meeting halls with kitchenette	10	5
Premises with showers and toilets		
Golf clubs, gyms, pools etc. (per person)	50	10
Hospitals – per bed	350	150
Shops/shopping centres		
Per employee	15	10
Public access	5	3
School – childcare		
Per day pupil and staff	20	20
Resident staff and boarders	150	80

Factories, offices, day training centres,

 $^{^{10}}$ Based on EPA Publication 500: Code of Practice for Small Wastewater Treatment Plants.

¹¹ Number of seats multiplied by the number of seatings, i.e., may include multiple seatings for breakfast, morning and afternoon teas, lunch and dinner.

¹² For premises such as public areas, factories or offices with showers and toilets, use the flow rates for 'Premises with showers and toilets' in the calculations.


Step Five - Final Design Solution

(viii) Discuss amongst your group and decide upon the 'most suitable' OSSM system for the Site layout (below) and the soil conditions you have assessed today.

Treatment System: (Primary / Secondary), Why?
LAA System type:
Applicable (Design) Soil Loading Rate: (mm/day)
Mitigation proposed: (What/Why?)

(ix) Prepare a case to justify your system selection and determine the appropriate sizing and arrangement for your system on the following development Site.

LAA required (m²):

Each group will have an opportunity to present their design and will be expected to explain / rationalise how they have reached their conclusions.

Table~4-8: Soil~categories~and~design~loading/irrigation~rates~(reproduced~from~AS1547:2012~with~permission~by~Standards~Australia)

Soil texture	Soil structure	Soil category	Indicative soil permeability		Design irriç	gation rates (DIR)/design l	oading rates (DLR) (n	nm/day)	
				Absorption	on trenches/ b	eds	ETA trenches/ beds	Subsurface and surface irrigation	LPED irrigation	Mounds (basal area)
					Table L1, NZS 1547:2012		Table L1, AS/NZS	Table M1, AS/NZS 1547:2012	Table M1, AS/NZS	Table N1, AS/NZS
				Primary trea Conservative rate			1547:2012		1547:2012	1547:2012
Gravels and sands	Structureless (massive)	1	>3.0	See Note 1 of To		3 1547:2012	See Note 4 of Table L1, AS.NZS1547 :2012	5 (See Note 1 of Table M1, AS/NZS 1547:2012)	See Note 3 of Table M1, AS/NZS154:201 2)	32
Sandy loams	Weakly structured	2a	>3.0					5	4	24
	Massive	2b	1.4-3.0	15	25	50		(See Note 1 Table M1, AS/NZS 1547:2012)	4	24
Loams	Highly/moderately structured	3а	1.5-3.0	15	25	50	-	4	3.5	24
	Weakly structured or massive	3b	0.5–1.5	10	15	30	-	4	3.5	16
Clay loams	Highly/moderately structured	4a	0.5–1.5	10	15	30	12	3.5	3	16
	Weakly structured	4b	0.12-0.5	6	10	20	8	3.5	3	8
	Massive	4c	0.06-0.12	4	5	10	5	3.5	3	5 (See Note
Soil texture	Soil structure	Soil category	Indicative soil permeability		Design irrig	gation rates (DIR)/design l	oading rates (DLR) (n	nm/day)	
			Ksat (m/d)	Absorption	on trenches/ b	eds	ETA trenches/ beds	Subsurface and surface irrigation	LPED irrigation	Mounds (basal area)
				Table L1, AS/NZS 1547:2012			Table L1, AS/NZS	Table M1, AS/NZS 1547:2012		Table N1, AS/NZS
				Primary trea	Maximum	Secondary treated effluent	1547:2012		1547:2012	1547:2012
				rate	rate					of Table N1 AS/NZS 1547:2012)
Light clays	Strongly structured	5a	0.12-0.5	5	8	12	8	3	2.5	8
	Moderately structured	5b	0.06-0.12		5	10	5	3 (See Note 1 of Table	(See Note 4 of Table M1,	of Table N1
	Weakly structured or massive	5c	<0.06			8	(See Note 2, 3 5 of	M1, AS/NZS1547:2012)	AS/NZS1547:20 12)	AS/NZS 1547:2012)
Medium to	Strongly structured	6a	0.06-0.5	(See Notes 2 and	3 of Table		Table L1 AS/NZS	2	(Car Nata Car	_
heavy clays	Moderately structured	6b	<0.06	L1 AS/NZS1547:2012)			1547:2012)	(See Note 2 of Table M1,	(See Note 3 of Table M1, AS/NZS1547:20	
	Weakly structured or massive	6c	<0.06					AS/NZS1547:2012)	12)	

Table 4-9: Soil categories and design loading/irrigation rates recommended for Victoria

Soil texture	Soil structure	Soil category	Design irrigation rates (DIR)/design loading rates (DLR) (mm/day)							
			Absorption trenches/ beds	ETA trenches/ beds	Subsurface and surface irrigation	LPED irrigation	Mounds (basal area)			
			Table L1, AS/NZS 1547:2012	Table L1, AS/NZS 1547:2012	Table M1, AS/NZS 1547:2012	Table M1, AS/NZS 1547:2012	Table N1, AS/NZS 1547:2012			
Gravels and sands	Structureless (massive)	1	Recommended to use values from "conservative rate"	ETA/ETS systems are not	Refer to values and notes in	LPED irrigation is	Refer to values and			
Sandy loams	Weakly structured	2a	column of Table 4-8 See also Note 1, 2 and 3 of Table 4-9	normally used on soil categories 1 and 2a.	Table 4-8 See also Note 4 of	not suitable on soil categories 1 and 2a	notes in Table 4-8			
	Massive	2b	•	15	Table 4-9	Refer to				
Loams	Highly/moderately structured	3a		Refer to values and notes in	-	values and notes in Table 4-8				
	Weakly structured or massive	3b	•	Table 4-8						
Clay loams	Highly/moderately structured	4a								
	Weakly structured	4b								
	Massive	4c	•							
Soil texture	Soil structure	Soil category	Design	irrigation rates (DIR)/design loading rate	es (DLR) (mm/da)	<i>(</i>)			
			Absorption trenches/ beds	ETA trenches/ beds	Subsurface and surface irrigation	LPED irrigation	Mounds (basal area)			
			Table L1, AS/NZS 1547:2012	Table L1, AS/NZS 1547:2012	Table M1, AS/NZS 1547:2012	Table M1, AS/NZS 1547:2012	Table N1, AS/NZS 1547:2012			
Light clays	Strongly structured	5a								
	Moderately structured	5b								
	Weakly structured or massive	5c								
Medium to	Strongly structured	6a				LPED	•			
heavy clays	Moderately structured	6b				irrigation is not suitable				
	Weakly structured or massive	6c				on soil category 6				

Notes to Table 4-9:

- L. There is elevated risk associated with primary treated effluent being dispersed to trenches and beds in soil categories 1 and 2a. This is due to the high infiltration rate of these soils, which leads to uneven distribution along the base of the trench. These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- 2. Use of absorption trenches/beds in category 1 and 2a soils require design by a suitably qualified and experienced person. Where groundwater quality is at risk, secondary treatment is required and consideration should also be given to disinfection, nutrient removal, soil modification or distribution over a large application area.
- 3. Use of absorption trenches/beds in category 5b, 5c and 6 soils requires special design and distribution techniques or soil modification procedures. In most situations the design will need to rely on more processes than just absorption by the soil.
- 4. The design irrigation rate for subsurface or surface irrigation may be increased in sandy soils (categories 1 and 2) where secondary treatment is installed with disinfection and nutrient reduction.

TABLE L1
RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Desi	ign loading ra	te (DLR) (mm/	d)
Soil	Soil		Indicative	Tre	nches and be	ds	
category	texture	Structure	permeability (K _{sat})(m/d)	Primary treat	ted effluent	Secondary	ETA/ETS beds and
			v Saprin S	Conservative rate Maximum rate		treated effluent	trenches
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)	
2	Sandy loams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)	
	lounio	Massive	1.4 – 3.0	15	25	50	(see
	Loams	High/ moderate structured	1.5 – 3.0	15	25	50	Note 4)
3	Loams	Weakly structured or massive	0.5 – 1.5	10	15	30	
		High/ moderate structured	0.5 – 1.5	10	15	30	12
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8
		Massive	0.06 - 0.12	4	5	10	5
		Strongly structured	0.12 - 0.5	5	8	12	8
5	Light clays	Moderately structured	0.06 ~ 0.12		5	10	
THE		Weakly structured or massive	< 0.06			8	_
		Strongly structured	0.06 - 0.5				5 (see Notes 2, 3, & 5)
6	Medium to heavy clays	Moderately structured	< 0.06	(see Notes 2 & 3)	2, 3, α 3)
		Weakly structured or massive	< 0.06	-			

NOTES:

- The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.
- 3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).
- 4 ETA/ETS systems are not normally used on soil Categories 1 to 3.
- 5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE M1
RECOMMENDED DESIGN IRRIGATION RATE (DIR) FOR IRRIGATION SYSTEMS

_				Design irrigation rate (DIR) (mm/day)				
Soil Category (see Note 1)	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation		
1	Gravels and sands	Structureless (massive)	> 3.0	5 1		(see Note 3)		
2	Sandy	Weakly structured	> 3.0	(see Note 2)	5	4		
	loams	massive	1.4 – 3.0			4		
3	Loomo	High/ moderate structured	1 .5 – 3.0	4	4	3.5		
3	Loams	Weakly structured or massive	0.5 – 1.5	(see Note 1)	4			
	0	High/ moderate structured	0.5 – 1.5	3.5	0 "	9		
4	Clay loams	Weakly structured	0.12 - 0.5	(see Note 1)	3.5	3		
		Massive	0.06 0.12]				
		Strongly structured	0.12 – 0.5					
5	Light clays	Moderately structured	0.06 - 0.12	3 (see Note 1)	3	2.5 (see Note 4)		
		Weakly structured or massive	< 0.06					
	N. A. a. C. a. a.	Strongly structured	0.06 - 0.5					
6	Medium to heavy clays	Moderately structured	< 0.06	2 (see Note 2)	2	(see Note 3)		
	Ciays	Weakly structured or massive	< 0.06					

NOTES:

- 1 For Category 3 to 5 soils (loams to light clays), the drip irrigation system needs to be installed in an adequate depth of topsoil (in the order of 150 250 mm of *in situ* or imported good quality topsoil) to slow the soakage and assist with nutrient reduction.
- 2 For Category 1, 2, and 6 soils, the drip irrigation system has a depth of 100 150 mm in good quality topsoil (see CM1 and M3.1).
- 3 LPED irrigation is not advised for Category 1 or Category 6 soils drip irrigation of secondary effluent is the preferred irrigation method.
- 4 LPED irrigation for Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (see M5 and CM7.1).

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE N1
RECOMMENDED MOUND DESIGN LOADING RATES

Soil Category	Soil texture	Structure	Indicative permeability (K _{sat})(m/d)	Design loading rate (DLR) (mm/d)
1	Gravels and sands	Structureless (massive)	> 3.0	32
	0	Weakly structured	> 3.0	24
2	Sandy loams	Massive	1.4 – 3.0	24
		High/moderate structured	1.5 – 3.0	24
3	Loams	Weakly structured or massive	0.5 – 1.5	16
		High/ moderate structured	0.5 – 1.5	16
4	Clay loams	Weakly structured	0.12 – 0.5	8
		Massive	0.06 - 0.12	5 (see Note)
		Strongly structured	0.12 – 0.5	8
5	Light clays	Moderately structured	0.06 - 0.12	
		Weakly structured or massive	< 0.06	
		Strongly structured	0.06 – 0.5	5 (see Note)
6	Medium to heavy	Moderately structured	< 0.06	
	clays	Weakly structured or massive	< 0.06	

NOTE: To enable use of such soils for on-site wastewater land application, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

(Source: AS/NZS 1547:2012 Standards Australia)

SOIL SURVEY SHEET

Lands	Landscape (description) Site No										
Geolo	gy				,	Surface	drainag	ge			
Veget	ation					Internal drainage					
Aspec	t				•	Ground	water				
Slope	(%)										
Buffer	Buffer distances (all distances in metres, upslope or downslope)										
Sketch house on the lot S				Sur	face wa	ter stor	age	Ground	lwater	bore or	well
				Otł	ner build	lings		Swimm	ning po	ool	
				Property boundary - upslope			Property boundary - down slope				
Profile	e Descri	ption (s	secti	ion	number	s refer t	o Chapt	er 7 note	es)		
Soil horizon 6.2.1	depth (mm) from to	boundary type 6.2.3	field texture	6.2.4	structure -shape, grade, size 6.2.5	pH (units) Exercise 3	EC (dS/m) Exercise 2	dominant colour - moist 6.2.6	mottles 6.2.7	dispersion Exercise 1	coarse fragments 6.2.15
top											
second											
third											

Recorder Date

ppendix 2

APPENDIX 2

MODEL SITE REPORT

1 SITE EVALUATORS	
Company	Name(s)
Address	
ph:	fax:
Date of assessment: / / Sig	nature of evaluator: / /

2 SITE INFORMATION	
Address/locality of site	Council area
Owner/developer:	ph:
Address:	
Size/shape/layout Site plans attached Photograph attached	yes/no
Intended water supply	rainwater reticulated water supply bore/groundwater
Expected wastewater quantity (litres/day)	
Local experience (information attached regarding on-site sewage management systems installed in the locality)	yes/no

If any site or soil features have not been assessed, note why.

3	SITE ASSESSMENT	
Clima	te	
	Are low temperatures expected (particularly below 15°C)?	yes/no
Wher	e appropriate:	
	Rainfall water balance attached	yes/no
	Land application area calculation attached	yes/no
	Wet weather storage area calculation attached	yes/no
Flood	potential	
	Land application area above 1 in 20 year flood level	yes/no
	Land application area above 1 in 100 year flood level	yes/no
	Electrical components above 1 in 100 year flood level	yes/no
Expos	ure	
Slope		
Landf	orm	
Run-c	on and seepage	
Erosic	on potential	
	poto	
Site d	rainage	
Fill		
Grour	ndwater	
	Horizontal distance to groundwater well used for domestic	
	Relevant groundwater vulnerability map referred to?	yes/no/not available
	Level of protection (I – VI)	
	Bores in the area and their purpose:	
Buffer	distances from wastewater	
 Mana	gement system to:	
	Permanent waters (m)	
	Other waters (m)	
	Other sensitive environments (m)	
	Boundary of premises (m)	
	Swimming pools (m)	
	Buildings (m)	
Is ther	re sufficient land area available for:	
	Application system (including buffer distances)	yes/no
	Reserve application system (including buffer distances)	yes/no
Surfac	ce rocks	

SOIL ASSESSMENT

Depth to bedrock or hardpan (m)

5	SYSTEM SELECTION	
Consi	deration of connection to a centralised sewerage system Approximate distance to nearest feasible connection point: Potential for future connection to centralised sewerage Potential for future connection to reticulated water	high/med/low high/med low/already connected
Туре	of land application system considered best suited to site:	
Why?		
Туре	of treatment system considered best suited to site and applic	ation system:
Why?		
6.	GENERAL COMMENTS	
Are th	nere any specific environmental constraints?	
Are th	nere any specific health constraints?	
Ληνια	other comments?	
ALLY C	ATION COMMITTERIA:	