

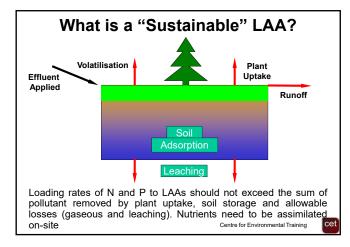
Nutrient Reduction - Small Treatment Systems

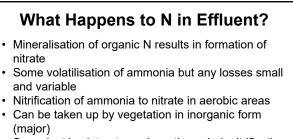
- Difficult to consistently achieve despite claims made by manufacturers
- Few domestic systems approved as Nitrogen-removing systems using nitrification/denitrification processes some overall net reduction of N may be achieved
- Some domestic systems designed to reduce Phosphorus levels using either natural or imported materials rich in iron and aluminium oxides to bind P
- Difficult to achieve without the use of chemicals or adsorptive media which have a finite lifetime

Centre for Environmental Training

Nutrient Removal in LAAs

- Reliance on LAAs to receive, treat and absorb (manage) some effluent and nutrients evenly with landscaping to utilise nutrients in effluent by <u>plant uptake</u>
- AS/NZS1547:2012 <u>does not</u> provide real guidance in this area (other than acknowledge there may be situations where nutrients may be an issue)
- NSW Guideline requires LAA calculation based on which is most limiting (hydraulic, N or P loading)
- · VIC Code gives sole consideration to N
- Most other state codes such as TAS (Director's Requirements) make no mention of nutrients

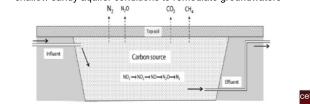

Centre for Environmental Training


AS/NZS1547:2012 (Appendix S)

Standard design is based primarily on hydraulic loading. There is no guidance on how to use nutrient data or how to apply in the design and sizing of LAAs.

Nutrient Contributions from Typical Residential Dwellings

Nutrient	Mass Loading (g/p/d)	Typical Concentration Untreated (mg/L)	Typical Concentration Treated (mg/L)	
Total Nitrogen	6 - 17	30 - 85	15 - 75	
Ammonia	1 - 3	4 - 13	negligible	
Nitrite and Nitrate	< 1	<1	15 - 45	
Total Phosphorus	12	4 - 15	4 - 10	
Source: AS/NZS1547:2012 from USEPA Centre for Environmental Training				



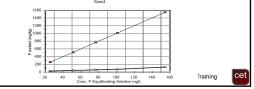
- Some lost back to atmosphere through denitrification as gas (minor)
- Mass load of N in effluent is often <u>surplus</u> and not utilized; leaching to groundwater likely as there is usually sufficient to meet vegetative requirements

Centre for Environmental Training

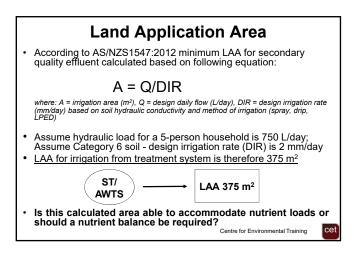
Field Denitrification Beds

- Can be used in situations where there are high nitrate loads in wastewaters; HRT is important
- For denitrification to occur a carbon source is essential microorganisms strip oxygen off nitrate to oxidise carbon
- Example of sealed system using woodchips/sawdust as C source – nitrified effluent flooded into system
- Woodchip denitrification walls can also be used subsurface in shallow sandy aquifer conditions to remediate groundwaters

Field Denitrification Beds


What Happens to P in Effluent?

- Taken up in vegetation uptake in inorganic form (minor), plants uptake 8-10 times less P than N
- Many soils good at immobilising P major mechanism of P removal is therefore soil adsorption
- P can be chemically precipitated and adsorbed in soils (major, particularly in clay soils)
- Leaching will only occur when adsorption sites saturated (if soil sorption capacity exceeded) and additions are in excess of vegetation requirements
- More of an issue in specific (sandy) soils and sensitive in locations (e.g. Category 1 and 2 soils)

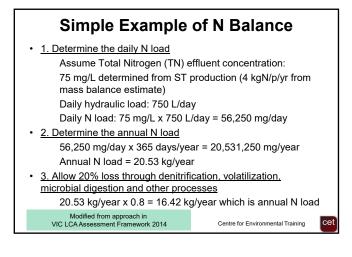

Centre for Environmental Training

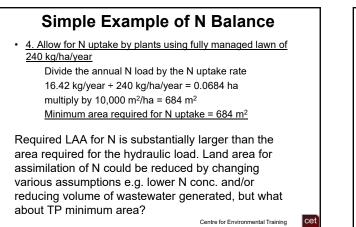
P Adsorption

- Many soils good at immobilising P (major mechanism)
 depends on presence of hydrous oxides of Fe and Al
- Adsorption rates of P may range between 0 >1,000 mg/kg of soil - measured in laboratory test - indices used include Phosphate Retention Index (PRI) and Phosphate Sorption Index (PSI)
- Calculation of sustainable life of LAA depends on P adsorption of soil P-Isotherm - Geary May10

Mass Balances

In accounting for **material** (nutrients) entering and leaving a system, **mass** flows need to be identified ... but this is not always easy to do!


Land Use	Nitrogen	Ph	osphorus	
Activity				
Piggeries	8	2.7	, ,	
Dairy Shed Effluent	5.4	0.7	,	
Septic Tanks	4	0.3	8 - 0.7	
Units: kg/person or			Land application of	
	animal/yr			super!
				Centre for Environmental Training Cet


Mass Balance Approach

- P Production from septic tanks range 0.3 0.7 kg/p/yr use 0.5
- N Production from septic tanks approx. 4 kg/p/yr
- Calculation based use of above rates and number in household assume 5 people
- <u>Calculated N from household 20 kgN/yr</u>
- Calculated P from household 2.5 kgP/yr
- Need to know whether N and P loads can be assimilated within area calculated based on hydraulic load
- Using previous example from secondary treated effluent (ATS) 375 m² is required for effluent irrigation
- <u>This is equivalent to an areal loading rate of: 530 kg N/ha/yr and 67 kg P/ha/yr</u>
- A "sustainable" LAA needs to show whether the N and P can be assimilated on this land area!

Centre for Environmental Training

Plant Nutrient Uptake			
Сгор	TN (kg/ha/yr)	TP (kg/ha/yr)	
Eucalypts	180	20	
Pines	350	35	
Improved Pasture	300	30	
Lawn - Fully managed with clippings removed	240	30	
AS/NZS1547 states that P kgP/ha/y – higher levels if r AS/NZS1547 states that im between 50 - 90 kgN/ha/y	renovating pastur imature forests c	e on old land	

Simple Example of P Balance (using N approach on previous slides)					
 With daily hydraulic load of 750 L/d and TP concentration of 9 mg/L, <u>annual load to LAA is 2.46</u> <u>kg/yr</u> (close to mass balance estimate of 2.5 kg/yr) 					
 Allow for P uptake by fully managed lawn of 30 kg/ha/yr 					
 Divide annual P load by the P uptake rate to calculate LAA: 2.46 kg/year ÷ 30 kg/ha/year = 0.0820 ha multiply by 10,000 m²/ha = 820 m² 					
 Minimum area required for P uptake = 820 m² 					
While assimilation of P requires much larger land area than either hydraulic load or N, soil adsorption of P has not yet been considered Centre for Environmental Training Centre for Environmental Training Centre for Environmental Training					

To Include Soil P Adsorption Data

- Calculation uses assumed P adsorption of soil (500 mg/kg) and soil bulk density 1.5 g/cm3 (1,500 kg/m3); also assume that soil is 0.6 m deep
- Convert P_{sorb} in mg/kg to kg/ha:

 P_{sorb} (kg/ha) = P_{sorb} (mg/kg) × soil depth (m) × BD (kg/m³) × 0.01

- · By substitution then: P_{sorb} (kg/ha) = 500 × 0.6 × 1,500 × 0.01 = 4,500 kg/ha
- LAA area just required for hydraulic load 375 m²
- P_{sorb} of 375 m² LAA is 4,500 × 0.0375 = 168.7 kg
- Assuming LAA life of 25 years, P load generated by system is 2.46 kg/yr \times 25 yr which is 61.5 kg (<< than P_{sorb} of 168.7 kg) LAA will theoretically accommodate P generated by system just by soil adsorption (without considering any P uptake by plants)

Centre for Environmental Training

Critical Loading Rate Concept

- · NSW Guideline (Appendix 6) adopts approach using concept of critical loading rate L_x
- Based on the assumed ability of vegetation to use nutrients before they pass through the root zone (very conservative)
- Guideline requires calculations to be undertaken to determine irrigation area requirements for N & P with the larger area chosen as minimum area
- Use formula $A = (C \times Q)/L_x$
- where A = land area (m²); C = conc. of nutrient (mg/L); Q = design daily flow (L/d) and $L_{\rm x}$ = critical loading rate of nutrient (mg/m²/d)

Centre for Environmental Training

Critical Loading Rate Concept

• Recommended critical loading rates in NSW Guideline: L_x for nitrogen for pasture L_n-18 - 36 mg/m²/d (equivalent to 66 - 131 kg/ha/yr) and L_x for phosphorus for pasture $L_p = 2 - 4 \text{ mg/m}^2/d$ (equivalent to 7 - 14kg/ha/yr)

The use of these low loading rates results in unrealistically large land areas for nutrient assimilation, significant cost to install and the striped lawn effect! Nutrient balance approach and P_{sorb} values in NSW Guideline should not be used.

Annual Pollutant Loads from a Small Catchment					
Source	Total P (kg)	Total N (kg)	<i>E.coli</i> (cfu/100mL)		
On-Site Systems	21.68 (1.77%)	125.5 (0.59%)	4.15 × 10 ¹¹ (0.08%)		
Other Sources	1206 <u>(98.23%)</u>	21231 <u>(99.41%)</u>	1.54 × 10 ¹⁴ <u>(99.92%)</u>		