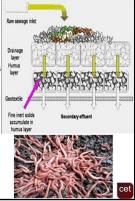


Composting Toilets

- Rely on actions of microorganisms in an aerobic environment to decompose organic material into humus like material which must be periodically removed
- Systems usually dry (waterless), although wet system available incorporating vermiculture
- Success is dependent to a large degree upon the commitment of the homeowner
- Liquid waste still requires disposal and necessary to install a greywater treatment and LA system
- Refer to requirements of AS1546.2 Part 2: Waterless Composting Toilets
 Centre for Environmental Training Cent

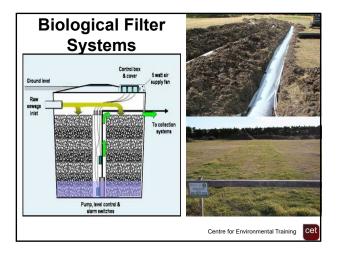
Composting Toilets Can take either all toilet waste or separate the solids and urine Typically faecal solids collected in one or several containers and replaced when full Types of container systems: Continuous - single container where toilet waste decomposes and moves through chamber or large vault Batch - two or more containers, one active and one fallow Self-contained with heating element and fan Centre for Environmental Training

Control Variables


- Optimum composting achieved with C:N ratio approaching 30:1 - excreta requires added carbon source to balance C:N ratio; 12-month composting period before subsurface disposal
- Moisture content needs to be reduced to 12-40% adequate ventilation required to enhance moisture:air ratio

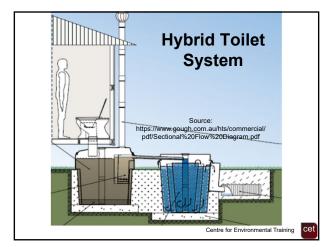
Odours	None, inoffensive
Consistency	Friable, humus
C:N ratio	> 14:1
Microbiological	< 200cfu/g Thermotolerant
Criteria	coliforms

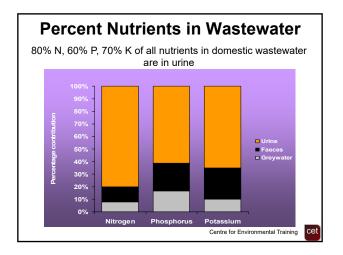
Biological Filter Systems


- "Wet" composting systems that are comprised of different filtering mediums
- Earthworms and bacteria breakdown and consume the solid residuals and liquid organics
- Consist of several layers worms and finely structured humus and coco-peat layer and geofabric layer
- Worms aerate the entire system, which allows the aerobic bacteria to survive and convert waste into humus and maintain drainage and air porosity

Vermiculture (worm-based)

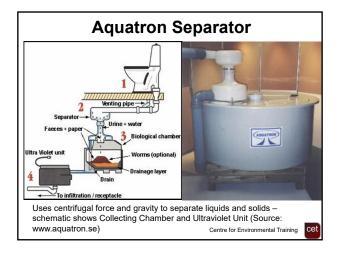
- Aerobic process, low or no odour
- Mechanical components - singlephase industrial strength pump + small air pump
- Secondary effluent land applied
- Requires some maintenance




Hybrid Toilet System

- Two-tank system involving primary and secondary tanks – separation chamber in primary tank allows liquids to pass
- Aeration provided by standard rotary ventilation.
- Second tank contains maze of plastic pipe media which allows biofilm to develop and results in long retention time before discharge
- Treated effluent of higher quality discharged to ground in land application area or to holding tank
- Used successfully in remote and low use areas

Centre for Environmental Training



Yellow is the New "Grey" · UST used in Europe for many years to separate urine from faeces and N. P, K at source to avoid mixing with faecal matter Reduces water use and nutrient discharge Stored dehydrated urine

- can be used as alternative fertiliser in agriculture
- Closes the "nutrient loop"
- Global P scarcity!

Research Trials

- Continuing trials in Brisbane and Sydney through UTS and Griffith Universities (Nutrients in a Circular Economy Project)
- Currumbin Ecovillage, QLD 20 households used Gustavsberg toilets over 2 years - sustainable living philosophy part of design to maximise conservation and/or recycling of resources
- Kinglake West, VIC Yarra Valley Water project to examine sustainable sewerage solutions; 23 households participated to investigate yellow water harvesting, greywater systems and STEP tanks
- Results at Kinglake indicated no significant reduction in nutrient load going to STP, although harvested nutrients delivered agronomic benefits (irrigation to turf farm). As a fertilizer though, significantly more expensive than commercially available fertilisers; high costs due to expensive than commercially available refunction, ingl. Commercial dilution of urine with toilet flush water and management of increased Centre for Environmental Training volumes

Domestic Greywater

- Greywater contains some pathogenic micro-organisms (see table)
- Kitchen greywater typically not reused (due to quality) while bathroom and laundry may be
- Typically contains particles of dirt, food, lint, sand, some of which can be removed by basic filtering
- Also contains inorganic salts (sodium) and organics such as oils, fats, milk, soap and detergents (plus N, P and K)
- Has potential to cause unpleasant odours and contribute to environmental problems off-site

Source	Rose <i>et al.</i> (1991)	
Bathing/ Shower water	6 x 10 ³ cfu	
Laundry wash water	126 cfu	
Laundry rinse water	25 cfu	
Combined wastewater	6 to 80 cfu 1.5 x 10 ³ cfu	
FCs – cfu/100mL		
Centre for Environmental Training		

Reuse Options – Manual Bucketing

- Considered low risk but contaminants still present as no treatment
- Reuse of relatively small volumes
- Bath, shower or laundry water collected manually
- Can also bucket water for direct toilet flushing but not to be added to cistern
- With water shortages option more commonly used

Diversion Using Gravity or Pumping

- Greywater is untreated so must be used when generated
- Gravity Diversion appropriate where slope away from house
- Pump Diversion requires surge tank and backflow protection; electrically operated pump
- Both devices should have tap, valve or switch to provide for diversion to garden or to sewer (but some do not)
- Distributed through subsurface irrigation (min. 10 cm) and requires careful management
- Considered low to medium risk activity with reduced risk of pathogen exposure

Treatment Systems

- Collects, stores, treats using mechanical and biological processes and may disinfect greywater
- Appropriately treated greywater can be reused for subsurface and surface irrigation and for in-house use such as toilet flushing and laundry
- Most States accredit treatment systems and installation must be Council approved; installed by a licensed plumber and maintained
- Refer also to AS 1546.4 2016 Part 4: Domestic Greywater Treatment Systems

Further Reading

- AS/NZS 1546 On-site Domestic Wastewater Treatment Units: Part 2: Waterless Composting Toilets (2008); Part 4: Domestic Greywater Treatment Systems (2016)
- Beal, C. et al (2008) Urine-Separation and Reuse Trial, Water, 35(1), February, 66-69
- Beal C.D, Fam D. & Clegg S (2020), Over-promising and underdelivering: institutional and social networks influencing the emergence of urine diversion systems in Queensland, Australia. See: file:///C:/Users/philg/Downloads/Bealetal2020_UDSlessonslearnt_preprint.pdf
- Fernando, R. *et al* (2014) Decentralised Sewerage Servicing Evaluation of a Yellow Water, Greywater and Blackwater Trial, *Water*, 41(7), November, 41-53
- NSW Department of Water and Energy (2007) Greywater Fact Sheets
 No. 2 Choosing the Right Greywater System For Your Needs
- Wald, C. (2022) How Recycling Urine Could Help Save The World, Nature, 602, 10 February, 202-206

Centre for Environmental Training Cet