On-site Wastewater Management Training Course Soil Absorption Systems; Trenches and Beds Honorary Associate Professor Phillip Geary School of Environmental & Life Sciences The University of Newcastle NSW

Design of soil absorption system and calculation of lineal metres of trench needs to be based on hydraulic capacity of most limiting horizon or layer • Significant physical, chemical and microbiological treatment of effluent occurs in unsaturated soils • Older absorption systems often rely on the distribution of effluent subsurface by gravity, but operate better when pressurised • The poor performance of systems is often related to an inadequate understanding of the hydraulic capacity of the receiving soils

Standard ET or ETA Bed

- Lined or unlined systems use absorption, as well as evaporation and transpiration (evapotranspiration)
- Vegetation cover must be maintained to optimise evapotranspiration
- Effluent drawn up from storage into root zone of plants by capillary action
- · Shape of surface designed to maximise runoff
- Surface area calculation (water balance required)
- Often used where site limitations exist e.g. in locations with low permeability soils and useful in drier climates

Centre for Environmental Training

Design of Subsurface Systems ...

Depends on:

- <u>Hydraulic capacity of soil</u> limiting design parameter (LDP) for soils of low hydraulic conductivity
- · Purification ability of soil not easily assessed
- Hydraulic load application rate of wastewater
- A simple set of design criteria which adequately considers all the above factors does not exist

Centre for Environmental Training

cet

Design Loading Rate (DLR)

- Infiltration of effluent into soil is limited by clogging layer, but soil texture and structure are important too
- DLR of soil expressed in L/m²/d
- DLR is always < < clean water permeability

DLR for Trenches and Beds

(Adapted from Table L1 AS/NZS1547:2012)

	, ,			,		
Soil Category	Soil Texture	Structure Range of categories not shown	Indicative K (m/d)	Primary Conserv. DLR (mm/d)	Primary Max. DLR (mm/d)	
1	Gravels & sands	Massive	> 3.0	See note	See note	
2	Sandy loams	Range	1.4 - 3.0	15	25	
3	Loams	Range	0.5 - 3.0	10	25	
4	Clay loams	Range	0.06 - 1.5	4	15	
5	Light clays	Range	0.06 - 0.5	5	8	
6	Heavy clays	Range	< 0.06 - 0.5	See note	See note	
	For primary treated effluent conservative DLR should be used					
	Centre for Environmental Training Cet					

Soil Absorption - Simple Example

- · Assume soil DLR is 15 mm/d*
- · Assume hydraulic load is 150 L/p/d
- 1 Litre of water or effluent applied to 1 m² covers to a depth of 1 mm
- Maximum effluent loading rate should therefore not exceed 15 L/m² otherwise failure will occur
- Required <u>contact area</u> is therefore 10 m² (based on hydraulic load (150 L divided by DLR of 15 L/m²)

*Remember – 1 mm/day is equivalent to a loading rate of 1 L/m²/day For example, 20 mm/day is dimensionally equivalent to 20 L/m²/day

Design Method - Trenches and Beds

(AS/NZS1547:2012)

- Undertake SSE procedure and determine land capability constraints and setbacks or buffers - need suitable deep soil for absorption
- Assuming site and soil appropriate (not in medium or heavy clay), select primary DLR taking into account any limiting factors raised in SSE report
- Size disposal areas according to:

 $L = Q/(DLR \times W)$

where L = trench length (m), Q = design daily flow (L/d), DLR = design loading rate (mm/d) and W = width (m)

Centre for Environmental Training

Design Method - Trenches and Beds

(AS/NZS1547:2012)

- Example: L = Q/(DLR × W)
- Daily design hydraulic load Q = 750 L/d
- DLR 15 L/m²/d (assessed by designer based on field measurement or field/lab textural method; conservative DLR used for primary effluent)
- · Assume a trench 1 m wide then,
- L = 750/(15 × 1) = 50 lineal metres
- DLR in AS/NZS1547 (2012) is to be used to size horizontal bottom area only in trenches and beds

Centre for Environmental Training

Alternative Trench Systems and Non-conventional Beds

- · Variety of alternatives to traditional trench and bed designs
- NcBs seek to enhance the performance of more traditional trenches and bed designs
- · Make use of larger basal area, inter-trench space for evapotranspiration using various plants and/or provide additional treatment (i.e. filtration) so that higher design loading rates can be applied

Centre for Environmental Training

Wick Trench and Bed

- can be used in other soil types too
- Suitable for both Primary and Secondary • Geotextile wick draws effluent
- Suited to small blocks
- Assists trench seepage with evapotranspiration from adjacent bed
- Evapotranspiration bed can be either side of trench
- For use in clay soils but Trench and bed are linked by a geotextile wrap which lies both under and over the trench and bed
 - moisture upwards by capillary action into the root zone of the vegetation above
 - Design calculation uses loading factor to reflect improved storage/ET efficiency in the design

Centre for Environmental Training

Advanced Enviro-Septic (AES)

- Combined treatment and disposal pipe system
- Pipes installed in the land application area as either absorption trenches or evapo-transpiration beds and surrounded by a layer of coarse washed sand
- Pipes are corrugated, perforated, high-density plastic with a series of ridges and "skimmers" extending into its interior
- Skimmers capture grease and expose to aerobic degradation
- A non-woven geo-textile plastic fabric around the mat of fibres acts as filter and surface for biomat growth
- Sand allows air transfer to biomat surface and further filtration before effluent enters underlying soil

https://www.enviro-septic.com.au/

System Sizing

- Manufacturer recommends maximum hydraulic load of 114 L per pipe length (3 metre) – loading rates approx. 38 L/m² for secondary or 30 L/m² for advanced secondary
- Trench or bed basal area sized on Secondary treated effluent loading rates of AS/NZS 1547:2012 (Table L1)
- In QLD considered a Secondary treatment system
- In NSW not considered a sewage management facility but a land application system and requires approved system for Primary treatment (septic tank)

Evapotranspiration Trenches

- Use balance tank after ST and consists of separate linked concrete pods
- Small footprint raised garden beds filled with imported suitable soil
- · Suitable for poor soils and difficult sites
- · Effluent remains subsurface and is recirculated
- · Commercial term Rhizopods

Evapo(transpiration) Beds

- Above ground land application evaporative system
- Bed of substrate where wastewater is evaporated
- Materials such as treated timber, corrugated iron and brick used to enclose substrate
- Suitable for poor soils and difficult sites
- Plants and landscaping can be incorporated into the design
- 4 bdr 1,000 L/day system footprint: 10m × 4m × 0.6m ht

http://www.evapocycle.com/home/

Summary

- Trenches and beds utilising soil absorption (and evapotranspiration) continue to provide an effective means of land application and treatment of effluent
- Soils can provide excellent renovation capacity when loaded at an appropriate DLR but trenches not suited to heavy soils without some site and soil modification
- Systems incorporating evapotranspiration require water balance sizing
- SSE very important in designing systems and design needs to be undertaken by trained persons

Centre for Environmental Training

Further Reading

- AS/NZS 1547:2012 On-site Domestic Wastewater Management
- Cromer, WC (2013) Nonconventional Beds: Notes for Designers, Installers and Regulators, Unpublished Report William C Cromer Pty

 Ltd.
- Patterson, RA (2006) Evapotranspiration Bed Designs for Inland Areas http://lanfaxlabs.com.au/papers/P51-Technical%20Sheet%20%20Evapotranspiration-aug06.pdf
- WaterNSW (2019) Designing and Installing On-Site Wastewater Systems A WaterNSW Current Recommended Practice https://www.waternsw.com.au/ data/assets/pdf file/0003/58251/Designing-and-Installing-On-Site-Wastewater-Systems-WaterNSW-CRP-2019.pdf
- https://www.enviro-septic.com.au/
- http://www.evapocycle.com/home/
- www.arris.com.au

Centre for Environmental Training

